Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.194
2.
Aging (Albany NY) ; 16(8): 7101-7118, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38663930

BACKGROUND: Some preceding researches have observed that certain neurological disorders, such as Alzheimer's disease and multiple sclerosis, may affect breast cancer risk. However, whether there are causal relationships between these neurological conditions and breast cancer is inconclusive. This study was designed to explore whether neurological disorders affected the risks of breast cancer overall and of the two subtypes (ER+ and ER-). METHODS: In the course of this study, genome-wide association study (GWAS) data for nine neurological diseases (Alzheimer's disease, multiple sclerosis, Parkinson's disease, myasthenia gravis, generalized epilepsy, intracerebral haemorrhage, cerebral atherosclerosis, brain glioblastoma, and benign meningeal tumour) were collected from the Complex Trait Genetics lab and the MRC Integrative Epidemiology Unit, and single-nucleotide polymorphisms (SNPs) extensively associated with these neurological ailments had been recognized as instrumental variables (IVs). GWAS data on breast cancer were collected from the Breast Cancer Association Consortium (BCAC). Two-sample Mendelian randomization (MR) analyses as well as multivariable MR analyses were performed to determine whether these SNPs contributed to breast cancer risk. Additionally, the accuracy of the results was evaluated using the false discovery rate (FDR) multiple correction method. Both heterogeneity and pleiotropy were evaluated by analyzing sensitivities. RESULTS: According to the results of two-sample MR analyses, Alzheimer's disease significantly reduced the risks of overall (OR 0.925, 95% CI [0.871-0.982], P = 0.011) and ER+ (OR 0.912, 95% CI [0.853-0.975], P = 0.007) breast cancer, but there was a negative result in ER- breast cancer. However, after multiple FDR corrections, the effect of Alzheimer's disease on overall breast cancer was not statistically significant. In contrast, multiple sclerosis significantly increased ER+ breast cancer risk (OR 1.007, 95% CI [1.003-1.011], P = 0.001). In addition, the multivariable MR analyses showed that Alzheimer's disease significantly reduced the risk of ER+ breast cancer (IVW: OR 0.929, 95% CI [0.864-0.999], P=0.047; MR-Egger: OR 0.916, 95% CI [0.846-0.992], P=0.031); however, multiple sclerosis significantly increased the risk of ER+ breast cancer (IVW: OR 1.008, 95% CI [1.003-1.012], P=4.35×10-4; MR-Egger: OR 1.008, 95% CI [1.003-1.012], P=5.96×10-4). There were no significant associations between the remainder of the neurological diseases and breast cancer. CONCLUSIONS: This study found the trends towards a decreased risk of ER+ breast cancer in patients with Alzheimer's disease and an increased risk in patients with multiple sclerosis. However, due to the limitations of Mendelian randomization, we cannot determine whether there are definite causal relationships between neurological diseases and breast cancer risk. For conclusive evidences, more prospective randomized controlled trials will be needed in the future.


Breast Neoplasms , Genome-Wide Association Study , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Humans , Breast Neoplasms/genetics , Breast Neoplasms/epidemiology , Female , Nervous System Diseases/genetics , Nervous System Diseases/epidemiology , Genetic Predisposition to Disease , Risk Factors , Alzheimer Disease/genetics , Alzheimer Disease/epidemiology
3.
Am J Hum Genet ; 111(5): 841-862, 2024 May 02.
Article En | MEDLINE | ID: mdl-38593811

RNA sequencing (RNA-seq) has recently been used in translational research settings to facilitate diagnoses of Mendelian disorders. A significant obstacle for clinical laboratories in adopting RNA-seq is the low or absent expression of a significant number of disease-associated genes/transcripts in clinically accessible samples. As this is especially problematic in neurological diseases, we developed a clinical diagnostic approach that enhanced the detection and evaluation of tissue-specific genes/transcripts through fibroblast-to-neuron cell transdifferentiation. The approach is designed specifically to suit clinical implementation, emphasizing simplicity, cost effectiveness, turnaround time, and reproducibility. For clinical validation, we generated induced neurons (iNeurons) from 71 individuals with primary neurological phenotypes recruited to the Undiagnosed Diseases Network. The overall diagnostic yield was 25.4%. Over a quarter of the diagnostic findings benefited from transdifferentiation and could not be achieved by fibroblast RNA-seq alone. This iNeuron transcriptomic approach can be effectively integrated into diagnostic whole-transcriptome evaluation of individuals with genetic disorders.


Cell Transdifferentiation , Fibroblasts , Neurons , Sequence Analysis, RNA , Humans , Cell Transdifferentiation/genetics , Fibroblasts/metabolism , Fibroblasts/cytology , Sequence Analysis, RNA/methods , Neurons/metabolism , Neurons/cytology , Transcriptome , Reproducibility of Results , Nervous System Diseases/genetics , Nervous System Diseases/diagnosis , RNA-Seq/methods , Female , Male
4.
Expert Rev Mol Med ; 26: e11, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38682637

Long non-coding RNAs (lncRNAs) are progressively being perceived as prominent molecular agents controlling multiple aspects of neuronal (patho)physiology. Amongst these is the HOX transcript antisense intergenic RNA, often abbreviated as HOTAIR. HOTAIR epigenetically regulates its target genes via its interaction with two different chromatin-modifying agents; histone methyltransferase polycomb-repressive complex 2 and histone demethylase lysine-specific demethylase 1. Parenthetically, HOTAIR elicits trans-acting sponging function against multiple micro-RNA species. Oncological research studies have confirmed the pathogenic functions of HOTAIR in multiple cancer types, such as gliomas and proposed it as a pro-oncological lncRNA. In fact, its expression has been suggested to be a predictor of the severity/grade of gliomas, and as a prognostic biomarker. Moreover, a propound influence of HOTAIR in other aspects of brain heath and disease states is just beginning to be unravelled. The objective of this review is to recapitulate all the relevant data pertaining to the regulatory roles of HOTAIR in neuronal (patho)physiology. To this end, we discuss the pathogenic mechanisms of HOTAIR in multiple neuronal diseases, such as neurodegeneration, traumatic brain injury and neuropsychiatric disorders. Finally, we also summarize the results from the studies incriminating HOTAIR in the pathogeneses of gliomas and other brain cancers. Implications of HOTAIR serving as a suitable therapeutic target in neuropathologies are also discussed.


RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Animals , Prognosis , Epigenesis, Genetic , Biomarkers , Nervous System Diseases/genetics , Nervous System Diseases/metabolism , Nervous System Diseases/therapy , Nervous System Diseases/pathology , Glioma/genetics , Glioma/pathology , Glioma/therapy , Glioma/metabolism
5.
Signal Transduct Target Ther ; 9(1): 112, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38670977

The induced pluripotent stem cell (iPSC) technology has transformed in vitro research and holds great promise to advance regenerative medicine. iPSCs have the capacity for an almost unlimited expansion, are amenable to genetic engineering, and can be differentiated into most somatic cell types. iPSCs have been widely applied to model human development and diseases, perform drug screening, and develop cell therapies. In this review, we outline key developments in the iPSC field and highlight the immense versatility of the iPSC technology for in vitro modeling and therapeutic applications. We begin by discussing the pivotal discoveries that revealed the potential of a somatic cell nucleus for reprogramming and led to successful generation of iPSCs. We consider the molecular mechanisms and dynamics of somatic cell reprogramming as well as the numerous methods available to induce pluripotency. Subsequently, we discuss various iPSC-based cellular models, from mono-cultures of a single cell type to complex three-dimensional organoids, and how these models can be applied to elucidate the mechanisms of human development and diseases. We use examples of neurological disorders, coronavirus disease 2019 (COVID-19), and cancer to highlight the diversity of disease-specific phenotypes that can be modeled using iPSC-derived cells. We also consider how iPSC-derived cellular models can be used in high-throughput drug screening and drug toxicity studies. Finally, we discuss the process of developing autologous and allogeneic iPSC-based cell therapies and their potential to alleviate human diseases.


COVID-19 , Cellular Reprogramming , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/cytology , Cellular Reprogramming/genetics , SARS-CoV-2/genetics , Cell Differentiation/genetics , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/pathology , Regenerative Medicine , Nervous System Diseases/therapy , Nervous System Diseases/genetics , Nervous System Diseases/pathology
6.
Front Biosci (Landmark Ed) ; 29(4): 142, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38682185

Innate lymphocytes, including microglial cells, astrocytes, and oligodendrocytes, play a crucial role in initiating neuroinflammatory reactions inside the central nervous system (CNS). The prime focus of this paper is on the involvement and interplay of neurons and glial cells in neurological disorders such as Alzheimer's Disease (AD), Autism Spectrum Disorder (ASD), epilepsy, and multiple sclerosis (MS). In this review, we explore the specific contributions of microglia and astrocytes and analyzes multiple pathways implicated in neuroinflammation and disturbances in excitatory and inhibitory processes. Firstly, we elucidate the mechanisms through which toxic protein accumulation in AD results in synaptic dysfunction and deregulation of the immune system and examines the roles of microglia, astrocytes, and hereditary factors in the pathogenesis of the disease. Secondly, we focus on ASD and the involvement of glial cells in the development of the nervous system and the formation of connections between neurons and investigates the genetic connections associated with these processes. Lastly, we also address the participation of glial cells in epilepsy and MS, providing insights into their pivotal functions in both conditions. We also tried to give an overview of seven different pathways like toll-like receptor signalling pathway, MyD88-dependent and independent pathway, etc and its relevance in the context with these neurological disorders. In this review, we also explore the role of activated glial cells in AD, ASD, epilepsy, and MS which lead to neuroinflammation. Even we focus on excitatory and inhibitory imbalance in all four neurological disorders as imbalance affect the proper functioning of neuronal circuits. Finally, this review concludes that there is necessity for additional investigation on glial cells and their involvement in neurological illnesses.


Nervous System Diseases , Neuroglia , Neurons , Humans , Neurons/metabolism , Neuroglia/metabolism , Nervous System Diseases/metabolism , Nervous System Diseases/genetics , Animals , Epilepsy/genetics , Epilepsy/metabolism , Epilepsy/physiopathology , Signal Transduction , Astrocytes/metabolism , Microglia/metabolism , Cell Communication , Multiple Sclerosis/metabolism , Multiple Sclerosis/genetics , Multiple Sclerosis/physiopathology , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Neuroinflammatory Diseases/metabolism , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/genetics
7.
Mol Biol Rep ; 51(1): 563, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38647711

Adeno-associated virus (AAV) has emerged as a pivotal tool in neuroscience research, owing to its remarkable versatility and efficiency in delivering genetic material to diverse cell types within the nervous system. This mini review aims to underscore the advanced applications of AAV vectors in neuroscience and their profound potential to revolutionize our understanding of brain function and therapeutic interventions for neurological disorders. By providing a concise overview of the latest developments and strategies employing AAV vectors, this review illuminates the transformative role of AAV technology in unraveling the complexities of neural circuits and paving the way for innovative treatments. Through elucidating the multifaceted capabilities of AAV-mediated gene delivery, this review underscores its pivotal role as a cornerstone in contemporary neuroscience research, promising remarkable insights into the intricacies of brain biology and offering new avenues for therapeutic intervention.


Dependovirus , Gene Transfer Techniques , Genetic Therapy , Genetic Vectors , Neurosciences , Dependovirus/genetics , Humans , Genetic Vectors/genetics , Animals , Neurosciences/methods , Genetic Therapy/methods , Brain/virology , Brain/metabolism , Nervous System Diseases/therapy , Nervous System Diseases/virology , Nervous System Diseases/genetics
8.
Sci Rep ; 14(1): 7256, 2024 03 27.
Article En | MEDLINE | ID: mdl-38538647

Body mass index (BMI) is a crucial health indicator for obesity. With the progression of socio-economic status and alterations in lifestyle, an increasing number of global populations are at risk of obesity. Given the complexity and severity of neurological diseases, early identification of risk factors is vital for the diagnosis and prognosis of such diseases. In this study, we employed Mendelian randomization (MR) analysis utilizing the most comprehensive genome-wide association study (GWAS) data to date. We selected single nucleotide polymorphisms (SNPs) that are unaffected by confounding factors and reverse causality as instrumental variables. These variables were used to evaluate the genetic and causal relationships between Body Mass Index (BMI) and various neurological diseases, including Parkinson's Disease (PD), Alzheimer's Disease (AD), Amyotrophic Lateral Sclerosis (ALS), Multiple Sclerosis (MS), Ischemic Stroke (IS), and Epilepsy (EP). The Inverse Variance Weighted (IVW) analysis indicated that there was no significant causal relationship between Body Mass Index (BMI) indicators and PD (P-value = 0.511), AD (P-value = 0.076), ALS (P-value = 0.641), EP (P-value = 0.380). However, a causal relationship was found between BMI indicators and MS (P-value = 0.035), and IS (P-value = 0.000), with the BMI index positively correlated with the risk of both diseases. The Cochran's Q test for MR-IVW showed no heterogeneity in the MR analysis results between the BMI index and the neurological diseases (P > 0.05). The Egger intercept test for pleiotropy revealed no horizontal pleiotropy detected in any of the neurological diseases studied (P > 0.05). It was found that there was no causal relationship between BMI and PD, AD, ALS, EP, and a genetic causal association with MS, and IS. Meanwhile, the increase in BMI can lead to a higher risk of MS and IS, which reveals the critical role of obesity as a risk factor for specific neurological diseases in the pathogenesis of the diseases.


Alzheimer Disease , Amyotrophic Lateral Sclerosis , Ischemic Stroke , Multiple Sclerosis , Nervous System Diseases , Parkinson Disease , Humans , Body Mass Index , Amyotrophic Lateral Sclerosis/genetics , Genome-Wide Association Study , Nervous System Diseases/genetics , Parkinson Disease/genetics , Multiple Sclerosis/genetics , Alzheimer Disease/genetics , Mendelian Randomization Analysis , Obesity/genetics
9.
Exp Biol Med (Maywood) ; 249: 10120, 2024.
Article En | MEDLINE | ID: mdl-38463392

Neuroinflammation is considered a balanced inflammatory response important in the intrinsic repair process after injury or infection. Under chronic states of disease, injury, or infection, persistent neuroinflammation results in a heightened presence of cytokines, chemokines, and reactive oxygen species that result in tissue damage. In the CNS, the surrounding microglia normally contain macrophages and other innate immune cells that perform active immune surveillance. The resulting cytokines produced by these macrophages affect the growth, development, and responsiveness of the microglia present in both white and gray matter regions of the CNS. Controlling the levels of these cytokines ultimately improves neurocognitive function and results in the repair of lesions associated with neurologic disease. MicroRNAs (miRNAs) are master regulators of the genome and subsequently control the activity of inflammatory responses crucial in sustaining a robust and acute immunological response towards an acute infection while dampening pathways that result in heightened levels of cytokines and chemokines associated with chronic neuroinflammation. Numerous reports have directly implicated miRNAs in controlling the abundance and activity of interleukins, TGF-B, NF-kB, and toll-like receptor-signaling intrinsically linked with the development of neurological disorders such as Parkinson's, ALS, epilepsy, Alzheimer's, and neuromuscular degeneration. This review is focused on discussing the role miRNAs play in regulating or initiating these chronic neurological states, many of which maintain the level and/or activity of neuron-specific secondary messengers. Dysregulated miRNAs present in the microglia, astrocytes, oligodendrocytes, and epididymal cells, contribute to an overall glial-specific inflammatory niche that impacts the activity of neuronal conductivity, signaling action potentials, neurotransmitter robustness, neuron-neuron specific communication, and neuron-muscular connections. Understanding which miRNAs regulate microglial activation is a crucial step forward in developing non-coding RNA-based therapeutics to treat and potentially correct the behavioral and cognitive deficits typically found in patients suffering from chronic neuroinflammation.


MicroRNAs , Nervous System Diseases , Humans , Neuroinflammatory Diseases , Nervous System Diseases/genetics , Microglia/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cytokines/metabolism , Chemokines/metabolism
10.
Neurology ; 102(6): e209161, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38447117

BACKGROUND AND OBJECTIVES: Genetic testing is now the standard of care for many neurologic conditions. Health care disparities are unfortunately widespread in the US health care system, but disparities in the utilization of genetic testing for neurologic conditions have not been studied. We tested the hypothesis that access to and results of genetic testing vary according to race, ethnicity, sex, socioeconomic status, and insurance status for adults with neurologic conditions. METHODS: We analyzed retrospective data from patients who underwent genetic evaluation and testing through our institution's neurogenetics program. We tested for differences between demographic groups in 3 steps of a genetic evaluation pathway: (1) attending a neurogenetic evaluation, (2) completing genetic testing, and (3) receiving a diagnostic result. We compared patients on this genetic evaluation pathway with the population of all neurology outpatients at our institution, using univariate and multivariable logistic regression analyses. RESULTS: Between 2015 and 2022, a total of 128,440 patients were seen in our outpatient neurology clinics and 2,540 patients underwent genetic evaluation. Black patients were less than half as likely as White patients to be evaluated (odds ratio [OR] 0.49, p < 0.001), and this disparity was similar after controlling for other demographic factors in multivariable analysis. Patients from the least wealthy quartile of zip codes were also less likely to be evaluated (OR 0.67, p < 0.001). Among patients who underwent evaluation, there were no disparities in the likelihood of completing genetic testing, nor in the likelihood of a diagnostic result after adjusting for age. Analyses restricted to specific indications for genetic testing supported these findings. DISCUSSION: We observed unequal utilization of our clinical neurogenetics program for patients from marginalized and minoritized demographic groups, especially Black patients. Among patients who do undergo evaluation, all groups benefit similarly from genetic testing when it is indicated. Understanding and removing barriers to accessing genetic testing will be essential to health care equity and optimal care for all patients with neurologic disorders.


Nervous System Diseases , Neurology , Adult , Humans , Retrospective Studies , Nervous System Diseases/diagnosis , Nervous System Diseases/genetics , Ambulatory Care Facilities , Genetic Testing
11.
Mol Biol Rep ; 51(1): 351, 2024 Feb 24.
Article En | MEDLINE | ID: mdl-38400865

The nervous system possesses the remarkable ability to undergo changes in order to store information; however, it is also susceptible to damage caused by invading pathogens or neurodegenerative processes. As a member of nucleotide-binding oligomerization domain-like receptor (NLR) family, the NLRP6 inflammasome serves as a cytoplasmic innate immune sensor responsible for detecting microbe-associated molecular patterns. Upon activation, NLRP6 can recruit the adapter protein apoptosis-associated speck-like protein (ASC) and the inflammatory factors caspase-1 or caspase-11. Consequently, inflammasomes are formed, facilitating the maturation and secretion of pro-inflammatory cytokines such as inflammatory factors-18 (IL-18) and inflammatory factors-1ß (IL-1ß). Precise regulation of NLRP6 is crucial for maintaining tissue homeostasis, as dysregulated inflammasome activation can contribute to the development of various diseases. Furthermore, NLRP6 may also play a role in the regulation of extraintestinal diseases. In cells of the brain, such as astrocytes and neurons, NLRP6 inflammasome are also present. Here, the assembly and subsequent activation of caspase-1 mediated by NLRP6 contribute to disease progression. This review aims to discuss the structure and function of NLRP6, explain clearly the mechanisms that induce and activate NLRP6, and explore its role within the central and peripheral nervous system.


Inflammasomes , Nervous System Diseases , Humans , Inflammasomes/metabolism , Cytokines/metabolism , Caspase 1/metabolism , Apoptosis , Nervous System Diseases/genetics , Caspases , Intracellular Signaling Peptides and Proteins
12.
Neuroscience ; 543: 65-82, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38401711

Clinical investigations showed that individuals with Alcohol Use Disorder (AUD) have worse Neurological Disease (ND) development, pointing to possible pathogenic relationships between AUD and NDs. It remains difficult to identify risk factors that are predisposing between AUD and NDs. In order to fix these issues, we created the bioinformatics pipeline and network-based approaches for employing unbiased methods to discover genes abnormally stated in both AUD and NDs and to pinpoint some of the common molecular pathways that might underlie AUD and ND interaction. We found 100 differentially expressed genes (DEGs) in both the AUD and ND patient's tissue samples. The most important Gene Ontology (GO) terms and metabolic pathways, including positive control of cytotoxicity caused by T cells, proinflammatory responses, antigen processing and presentation, and platelet-triggered interactions with vascular and circulating cell pathways were then extracted using the overlapped DEGs. Protein-protein interaction analysis was used to identify hub proteins, including CCL2, IL1B, TH, MYCN, HLA-DRB1, SLC17A7, and HNF4A, in the pathways that have been reported as playing a function in these disorders. We determined several TFs (HNF4A, C4A, HLA-B, SNCA, HLA-DMB, SLC17A7, HLA-DRB1, HLA-C, HLA-A, and HLA-DPB1) and potential miRNAs (hsa-mir-34a-5p, hsa-mir-34c-5p, hsa-mir-449a, hsa-mir-155-5p, and hsa-mir-1-3p) were crucial for regulating the expression of AUD and ND which could serve as prospective targets for treatment. Our methodologies discovered unique putative biomarkers that point to the interaction between AUD and various neurological disorders, as well as pathways that could one day be the focus of therapeutic intervention.


Alcoholism , MicroRNAs , Nervous System Diseases , Humans , HLA-DRB1 Chains/genetics , Gene Expression Profiling/methods , MicroRNAs/metabolism , Computational Biology/methods , Systems Biology , Nervous System Diseases/genetics
13.
Pediatr Neurol ; 153: 166-174, 2024 Apr.
Article En | MEDLINE | ID: mdl-38394831

The emergence of gene editing technologies offers a unique opportunity to develop mutation-specific treatments for pediatric neurological disorders. Gene editing systems can potentially alter disease trajectory by correcting dysfunctional mutations or therapeutically altering gene expression. Clustered regularly interspaced short palindromic repeats (CRISPR)-based approaches are attractive gene therapy platforms to personalize treatments because of their specificity, ease of design, versatility, and cost. However, many such approaches remain in the early stages of development, with ongoing efforts to optimize editing efficiency, minimize unintended off-target effects, and mitigate pathologic immune responses. Given the rapid evolution of CRISPR-based therapies, it is prudent for the clinically based child neurologist to have a conceptual understanding of what such therapies may entail, including both benefits and risks and how such therapies may be clinically applied. In this review, we describe the fundamentals of CRISPR-based therapies, discuss the opportunities and challenges that have arisen, and highlight preclinical work in several pediatric neurological diseases.


Muscular Dystrophy, Duchenne , Nervous System Diseases , Humans , Child , Gene Editing/methods , CRISPR-Cas Systems/genetics , Genetic Therapy , Nervous System Diseases/genetics , Nervous System Diseases/therapy
14.
Peptides ; 175: 171167, 2024 May.
Article En | MEDLINE | ID: mdl-38325715

Neuropeptide S (NPS) is a 20 amino acids-containing neuroactive molecule discovered by the reverse pharmacology method. NPS is detected in specific brain regions like the brainstem, amygdala, and hypothalamus, while its receptor (NPSR) is ubiquitously expressed in the central nervous system (CNS). Besides CNS, NPS and NPSR are also expressed in the peripheral nervous system. NPSR is a G-protein coupled receptor that primarily uses Gq and Gs signaling pathways to mediate the actions of NPS. In animal models of Parkinsonism and Alzheimer's disease, NPS exerts neuroprotective effects. NPS suppresses oxidative stress, anxiety, food intake, and pain, and promotes arousal. NPSR facilitates reward, reinforcement, and addiction-related behaviors. Genetic variation and single nucleotide polymorphism in NPSR are associated with depression, schizophrenia, rheumatoid arthritis, and asthma. NPS interacts with several neurotransmitters including glutamate, noradrenaline, serotonin, corticotropin-releasing factor, and gamma-aminobutyric acid. It also modulates the immune system via augmenting pro-inflammatory cytokines and plays an important role in the pathogenesis of rheumatoid arthritis and asthma. In the present review, we discussed the distribution profile of NPS and NPSR, signaling pathways, and their importance in the pathophysiology of various neurological disorders. We have also proposed the areas where further investigations on the NPS system are warranted.


Arthritis, Rheumatoid , Asthma , Nervous System Diseases , Neuropeptides , Animals , Anxiety , Asthma/metabolism , Nervous System Diseases/drug therapy , Nervous System Diseases/genetics , Neuropeptides/metabolism , Receptors, Neuropeptide/metabolism , Humans
15.
Prog Mol Biol Transl Sci ; 203: 165-180, 2024.
Article En | MEDLINE | ID: mdl-38359997

Neurological disorders are the group of diseases that primarily affect the center nervous system, which could lead to a significant negative impact on the ability of learning new skills, speaking, breathing, walking, judging, making decision, and other essential living skills. In the last decade, neurological disorders have significantly increased their impact to our community and become the one of leading causes of disability and death. The World Health Organization has identified neurological disorders including Alzheimer's disease and other dementia as the health crisis for the modern life. Tremendous ongoing research efforts focus on understanding of disease genetics, molecular mechanisms and developing therapeutic interventions. Because of the urgent need of the effective therapeutics and the recent advances in the toolkits and understanding for developing more drug-like RNA molecules, there is a growing interest for developing RNA therapeutics for neurological disorders. This article will discuss genetics and mechanisms of neurological disorders and how RNA-based molecules have been used to develop therapeutics for this group of diseases, challenges of RNA therapeutics and future perspectives on this rising therapeutic intervention tool.


Alzheimer Disease , Nervous System Diseases , Humans , RNA/genetics , Nervous System Diseases/genetics , Nervous System Diseases/therapy , Central Nervous System
17.
DNA Repair (Amst) ; 135: 103629, 2024 Mar.
Article En | MEDLINE | ID: mdl-38266593

Cells are constantly exposed to various sources of DNA damage that pose a threat to their genomic integrity. One of the most common types of DNA breaks are single-strand breaks (SSBs). Mutations in the repair proteins that are important for repairing SSBs have been reported in several neurological disorders. While several tools have been utilised to investigate SSBs in cells, it was only through recent advances in genomics that we are now beginning to understand the architecture of the non-random distribution of SSBs and their impact on key cellular processes such as transcription and epigenetic remodelling. Here, we discuss our current understanding of the genome-wide distribution of SSBs, their link to neurological disorders and summarise recent technologies to investigate SSBs at the genomic level.


DNA Breaks, Single-Stranded , Nervous System Diseases , Humans , DNA Repair , DNA Damage , Nervous System Diseases/genetics , Genomics
18.
Genes (Basel) ; 15(1)2024 Jan 21.
Article En | MEDLINE | ID: mdl-38275615

Aromatic L-amino acid decarboxylase deficiency (AADCd) is a rare autosomal recessive neurometabolic disorder caused by AADC deficiency, an enzyme encoded by the DDC gene. Since the enzyme is involved in the biosynthesis of serotonin and dopamine, its deficiency determines the lack of these neurotransmitters, but also of norepinephrine and epinephrine. Onset is early and the key signs are hypotonia, movement disorders (oculogyric crises, dystonia and hypokinesia), developmental delay and autonomic dysfunction. Taiwan is the site of a potential founder variant (IVS6+4A>T) with a predicted incidence of 1/32,000 births, while only 261 patients with this deficit have been described worldwide. Actually, the number of affected persons could be greater, given that the spectrum of clinical manifestations is broad and still little known. In our study we selected 350 unrelated patients presenting with different neurological disorders including heterogeneous neuromuscular disorders, cognitive deficit, behavioral disorders and autism spectrum disorder, for which the underlying etiology had not yet been identified. Molecular investigation of the DDC gene was carried out with the aim of identifying affected patients and/or carriers. Our study shows a high frequency of carriers (2.57%) in Sicilian subjects with neurological deficits, with a higher concentration in northern and eastern Sicily. Assuming these data as representative of the general Sicilian population, the risk may be comparable to some rare diseases included in the newborn screening programs such as spinal muscular atrophy, cystic fibrosis and phenylketonuria.


Amino Acid Metabolism, Inborn Errors , Autism Spectrum Disorder , Nervous System Diseases , Infant, Newborn , Humans , Autism Spectrum Disorder/genetics , Aromatic-L-Amino-Acid Decarboxylases/genetics , Nervous System Diseases/genetics , Genetic Testing
19.
Sci Signal ; 17(817): eadg0876, 2024 01 02.
Article En | MEDLINE | ID: mdl-38166033

Thousand and one amino acid kinases (TAOKs) are relatively understudied and functionally pleiotropic protein kinases that have emerged as important regulators of neurodevelopment. Through their conserved amino-terminal catalytic domain, TAOKs mediate phosphorylation at serine/threonine residues in their substrates, but it is their divergent regulatory carboxyl-terminal domains that confer both exquisite functional specification and cellular localization. In this Review, we discuss the physiological roles of TAOKs and the intricate signaling pathways, molecular interactions, and cellular behaviors they modulate-from cell stress responses, division, and motility to tissue homeostasis, immunity, and neurodevelopment. These insights are then integrated into an analysis of the known and potential impacts of disease-associated variants of TAOKs, with a focus on neurodevelopmental disorders, pain and addiction, and neurodegenerative diseases. Translating this foundation into clinical benefits for patients will require greater structural and functional differentiation of the TAOKs afforded by their individually specialized domains.


Nervous System Diseases , Signal Transduction , Humans , Phosphorylation , Protein Kinases , Nervous System Diseases/genetics
...